今回ご紹介するのは素子の「Time_input」と「Lookup_table」を使用してデータソースを PSIM 上に波形を再現してシミュレーションに組み込む方法です。例を挙げながら方法を説明します。

1. まず、下図の回路を構築します。

各素子のライブラリブラウザでの場所:

・「Lookup_table」素子は「素子」⇒「その他」⇒「その他関数ブロック」⇒「ルックアップテーブル」 となります。

・「Time_input」素子は「素子」⇒「電源」⇒「時間」となります。

図1 ルックアップテーブルのシミュレーション回路

1 次元のルックアップテーブルには、入力と出力が一つずつあります。入力と出力の配列 に対応した二つのデータ配列が、ルックアップテーブルに保存されます。 ルックアップテーブ ルのデータを定義する方法は二つあります。ひとつは、ルックアップテーブルタブ内のダイア ログから直接に入力する方法、もうひとつは、テキストエディタを使用してルックアップテーブ ルを外部で用意し、ダイアログ内でファイルを定義する方法です。

ここで、外部で用意したデータファイル(*.txt または*.csv)をルックアップテーブルに読み込む方法をご紹介します。

2. 外部データファイルを用意します。インストールフォルダにあるサンプルファイルを使用し てシミュレーションした波形結果をデータファイル(*.txt または*.csv)に保存します。

"buck - main.psimsch" (ファイルは…¥examples¥dc-dc にあります)を開き、シミュレーションします。

図2 降圧コンバータ回路

Simview を立ち上げて出力電圧の Vo を測定します。

プロパティ		Simview - buck - main.smv
曲線を選択 (曲線 スクリーン 利用可称な変数 [(STL1) /v	表示のたあの変数 追加→ < 一前除 全て追加→ < 全て自除	ファイル(F) 編集(E) 表示 軸(A) スクリーン(S) 潮定(M) 分析(y) ラペル(L) 2 取り消し クリップボードにコピー データポイント表示 20 30 30 30 30 30 30 30 30 30 30 30 30 30
		Time (s)
		Vo • 100 山、 へん 木 ハ い マ 12 100 広 → + PF J グラフ内のすべての点の値を取得します。

図3 Simview にて出力電圧波形の測定

メニューの「編集」⇒「データポイント表示」をクリックすると、時間と出力電圧 Vo の 1 次元のルックアップテーブルが生成されます。本操作しないと直接にテキストファイルに 保存する場合は1次元ではなく、全ての測定したパラメーターのデータが生成されるので ご注意ください。

Simview - Simview1					
ファイル(E) 編集 表示(⊻) ウインドウ(Ψ) ヘルプ(且)					
🖻 魯 🏽 い 👹 🖬 🖕 民 X Y 🖄 🔳 タ タ タ 密 密 🕙 🕈 🐂 ④ A 🖾 🗊 🖕					
📮 buck - main.smv 📗 Simview1 🗙 🔻					
			•		
Time	Vo				
1 1.0000000000000	0.0369909222176				
2 2.000000000000	0.1224371586664				
3 3.000000000000	0.2435628774808				
4 4.0000000000000	0.4115422540833				
5.000000000000	0.6252814428926				
6.0000000000000	0.8836629577618				
7.0000000000000	1.1855472461449				
8 8.0000000000000	1.5297742539422				
9 9.0000000000000	1.9151649796600				
10 0.0001	2.3405230165563				
11 0.00011	2.7770272549644				
12 0.00012	3.2019840961325				
13 0.0001300000000	3.6181633450435				
14 0.0001400000000	4.0225219588836		Ŧ		
準備中					

図4 時間と出力電圧 Voの1次元のルックアップテーブル

Simview メニューの「ファイル」⇒「名前をつけて保存(A)…」にてデータをテキストファイル (*.txt または*.csv)の形で保存されます。

■ 名前を付けて保存		X
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	► 😽 testの検索	Q
整理▼ 新しいフォルダー	811	- 0
★ お気に入り	更新日時	種類
📜 ダウンロード 📄 Time_Vo.txt	2017/09/06 14:18	テキスト ドコ
■ デスクトップ		
😒 最近表示した場所		
🌐 ライブラリ		
▲ コンピューター		
👞 ローカル ディス:		
▼		Þ
ファイル名(<u>N</u>):		-
ファイルの種類(工): Tab separated text file (Excel compatible) (*.txt)		•
Tab separated text file (Excel compatible) (*.txt)		
Comma separated file (*.csv) フォルダーの非表 Tayt file (table format) (* tyt) 		

図5 波形データをテキストファイルに保存

生成されたデータファイルは下図のようになります。一行目の非数値表現を削除します。デ ータファイルを閉じます。

図6 1次元の波形データ

3. 下図のように「ファイルを開き」をクリックして保存したデータを図1の PSIM 回路に読み込

図7 ルックアップテーブルによりデータファイルを PSIM 回路に読み込み

読み込んだら下図のようなイメージになります。

図7 ルックアップテーブルのデータ

最後はシミュレーションして Simview にてルックアップテーブルからの出力電圧波形を観測 します。

4. サンプル回路のシミュレーション結果を外部ファイルに生成して、PSIM 上にその波形を 再現します。

図8はサンプル回路のシミュレーション結果となります。図9は外部ファイルを読み込んで PSIM 上に波形を生成する結果となります。

図 8 "buck - main.psimsch"の出力電圧波形

図9 ルックアップテーブルによる出力電圧波形

5. 時間に対する多数の出力チャンネルを構築したい場合、複数の1次元ルックアップテーブ ルを使うことで実現することが可能です。下記の回路例をご参照ください。

図10 時間に対する多数出力の場合